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3.5 An Application to Systems of Differential Equations

A function f of a real variable is said to be differentiable if its derivative exists and, in this case, we let f ′

denote the derivative. If f and g are differentiable functions, a system

f ′ = 3 f +5g

g′ =− f +2g

is called a system of first order differential equations, or a differential system for short. Solving many
practical problems often comes down to finding sets of functions that satisfy such a system (often in-
volving more than two functions). In this section we show how diagonalization can help. Of course an
acquaintance with calculus is required.

The Exponential Function

The simplest differential system is the following single equation:

f ′ = a f where a is constant (3.14)

It is easily verified that f (x) = eax is one solution; in fact, Equation 3.14 is simple enough for us to find
all solutions. Suppose that f is any solution, so that f ′(x) = a f (x) for all x. Consider the new function g

given by g(x) = f (x)e−ax. Then the product rule of differentiation gives

g′(x) = f (x)
[
−ae−ax

]
+ f ′(x)e−ax

=−a f (x)e−ax +[a f (x)]e−ax

= 0

for all x. Hence the function g(x) has zero derivative and so must be a constant, say g(x) = c. Thus
c = g(x) = f (x)e−ax, that is

f (x) = ceax

In other words, every solution f (x) of Equation 3.14 is just a scalar multiple of eax. Since every such
scalar multiple is easily seen to be a solution of Equation 3.14, we have proved

Theorem 3.5.1

The set of solutions to f ′ = a f is {ceax | c any constant}= Reax.

Remarkably, this result together with diagonalization enables us to solve a wide variety of differential
systems.
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Example 3.5.1

Assume that the number n(t) of bacteria in a culture at time t has the property that the rate of
change of n is proportional to n itself. If there are n0 bacteria present when t = 0, find the number
at time t.

Solution. Let k denote the proportionality constant. The rate of change of n(t) is its time-derivative
n′(t), so the given relationship is n′(t) = kn(t). Thus Theorem 3.5.1 shows that all solutions n are
given by n(t) = cekt , where c is a constant. In this case, the constant c is determined by the
requirement that there be n0 bacteria present when t = 0. Hence n0 = n(0) = cek0 = c, so

n(t) = n0ekt

gives the number at time t. Of course the constant k depends on the strain of bacteria.

The condition that n(0) = n0 in Example 3.5.1 is called an initial condition or a boundary condition

and serves to select one solution from the available solutions.

General Differential Systems

Solving a variety of problems, particularly in science and engineering, comes down to solving a system
of linear differential equations. Diagonalization enters into this as follows. The general problem is to find
differentiable functions f1, f2, . . . , fn that satisfy a system of equations of the form

f ′1 = a11 f1 + a12 f2 + · · ·+ a1n fn

f ′2 = a21 f1 + a22 f2 + · · ·+ a2n fn
...

...
...

...
f ′n = an1 f1 + an2 f2 + · · ·+ ann fn

where the ai j are constants. This is called a linear system of differential equations or simply a differen-

tial system. The first step is to put it in matrix form. Write

f =




f1

f2
...
fn


 f′ =




f ′1
f ′2
...
f ′n


 A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann




Then the system can be written compactly using matrix multiplication:

f′ = Af

Hence, given the matrix A, the problem is to find a column f of differentiable functions that satisfies this
condition. This can be done if A is diagonalizable. Here is an example.
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Example 3.5.2

Find a solution to the system
f ′1 = f1 +3 f2

f ′2 = 2 f1 +2 f2

that satisfies f1(0) = 0, f2(0) = 5.

Solution. This is f′ = Af, where f =

[
f1

f2

]
and A =

[
1 3
2 2

]
. The reader can verify that

cA(x) = (x−4)(x+1), and that x1 =

[
1
1

]
and x2 =

[
3
−2

]
are eigenvectors corresponding to

the eigenvalues 4 and −1, respectively. Hence the diagonalization algorithm gives

P−1AP =

[
4 0
0 −1

]
, where P =

[
x1 x2

]
=

[
1 3
1 −2

]
. Now consider new functions g1 and g2

given by f = Pg (equivalently, g = P−1f ), where g =

[
g1

g2

]
Then

[
f1

f2

]
=

[
1 3
1 −2

][
g1

g2

]
that is,

f1 = g1 +3g2

f2 = g1−2g2

Hence f ′1 = g′1 +3g′2 and f ′2 = g′1−2g′2 so that

f′ =

[
f ′1
f ′2

]
=

[
1 3
1 −2

][
g′1
g′2

]
= Pg′

If this is substituted in f′ = Af, the result is Pg′ = APg, whence

g′ = P−1APg

But this means that [
g′1
g′2

]
=

[
4 0
0 −1

][
g1

g2

]
, so

g′1 = 4g1

g′2 =−g2

Hence Theorem 3.5.1 gives g1(x) = ce4x, g2(x) = de−x, where c and d are constants. Finally, then,
[

f1(x)
f2(x)

]
= P

[
g1(x)
g2(x)

]
=

[
1 3
1 −2

][
ce4x

de−x

]
=

[
ce4x +3de−x

ce4x−2de−x

]

so the general solution is

f1(x) = ce4x +3de−x

f2(x) = ce4x−2de−x c and d constants

It is worth observing that this can be written in matrix form as
[

f1(x)
f2(x)

]
= c

[
1
1

]
e4x +d

[
3
−2

]
e−x

That is,
f(x) = cx1e4x +dx2e−x
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This form of the solution works more generally, as will be shown.
Finally, the requirement that f1(0) = 0 and f2(0) = 5 in this example determines the constants c

and d:

0 = f1(0) = ce0 +3de0 = c+3d

5 = f2(0) = ce0−2de0 = c−2d

These equations give c = 3 and d =−1, so

f1(x) = 3e4x−3e−x

f2(x) = 3e4x +2e−x

satisfy all the requirements.

The technique in this example works in general.

Theorem 3.5.2

Consider a linear system
f′ = Af

of differential equations, where A is an n×n diagonalizable matrix. Let P−1AP be diagonal, where
P is given in terms of its columns

P = [x1, x2, · · · , xn]

and {x1, x2, . . . , xn} are eigenvectors of A. If xi corresponds to the eigenvalue λi for each i, then
every solution f of f′ = Af has the form

f(x) = c1x1eλ1x + c2x2eλ2x + · · ·+ cnxneλnx

where c1, c2, . . . , cn are arbitrary constants.

Proof. By Theorem 3.3.4, the matrix P =
[

x1 x2 . . . xn

]
is invertible and

P−1AP =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn




As in Example 3.5.2, write f =




f1

f2
...
fn


 and define g =




g1

g2
...

gn


 by g = P−1f; equivalently, f = Pg. If

P =
[
pi j

]
, this gives

fi = pi1g1 + pi2g2 + · · ·+ pingn
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Since the pi j are constants, differentiation preserves this relationship:

f ′i = pi1g′1 + pi2g′2 + · · ·+ ping′n

so f′ = Pg′. Substituting this into f′ = Af gives Pg′ = APg. But then left multiplication by P−1 gives
g′ = P−1APg, so the original system of equations f′ = Af for f becomes much simpler in terms of g:




g′1
g′2
...

g′n


=




λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn







g1

g2
...

gn




Hence g′i = λigi holds for each i, and Theorem 3.5.1 implies that the only solutions are

gi(x) = cie
λix ci some constant

Then the relationship f = Pg gives the functions f1, f2, . . . , fn as follows:

f(x) = [x1, x2, · · · , xn]




c1eλ1x

c2eλ2x

...
cneλnx


= c1x1eλ1x + c2x2eλ2x + · · ·+ cnxneλnx

This is what we wanted.

The theorem shows that every solution to f′ = Af is a linear combination

f(x) = c1x1eλ1x + c2x2eλ2x + · · ·+ cnxneλnx

where the coefficients ci are arbitrary. Hence this is called the general solution to the system of differential
equations. In most cases the solution functions fi(x) are required to satisfy boundary conditions, often of
the form fi(a)= bi, where a, b1, . . . , bn are prescribed numbers. These conditions determine the constants
ci. The following example illustrates this and displays a situation where one eigenvalue has multiplicity
greater than 1.

Example 3.5.3

Find the general solution to the system

f ′1 = 5 f1 + 8 f2 + 16 f3

f ′2 = 4 f1 + f2 + 8 f3

f ′3 =−4 f1− 4 f2− 11 f3

Then find a solution satisfying the boundary conditions f1(0) = f2(0) = f3(0) = 1.

Solution. The system has the form f′ = Af, where A =




5 8 16
4 1 8
−4 −4 −11


. In this case

cA(x) = (x+3)2(x−1) and eigenvectors corresponding to the eigenvalues −3, −3, and 1 are,
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respectively,

x1 =



−1

1
0


 x2 =



−2

0
1


 x3 =




2
1
−1




Hence, by Theorem 3.5.2, the general solution is

f(x) = c1



−1

1
0


e−3x + c2



−2

0
1


e−3x + c3




2
1
−1


ex, ci constants.

The boundary conditions f1(0) = f2(0) = f3(0) = 1 determine the constants ci.




1
1
1


= f(0) = c1



−1

1
0


+ c2



−2

0
1


+ c3




2
1
−1




=



−1 −2 2

1 0 1
0 1 −1






c1

c2

c3




The solution is c1 =−3, c2 = 5, c3 = 4, so the required specific solution is

f1(x) =−7e−3x + 8ex

f2(x) =−3e−3x + 4ex

f3(x) = 5e−3x− 4ex

Exercises for 3.5

Exercise 3.5.1 Use Theorem 3.5.1 to find the general
solution to each of the following systems. Then find a
specific solution satisfying the given boundary condition.

a. f ′1 = 2 f1 +4 f2, f1(0) = 0
f ′2 = 3 f1 +3 f2, f2(0) = 1

b. f ′1 =− f1 +5 f2, f1(0) = 1
f ′2 = f1 +3 f2, f2(0) =−1

c. f ′1 = 4 f2 +4 f3

f ′2 = f1 + f2−2 f3

f ′3 =− f1 + f2 +4 f3

f1(0) = f2(0) = f3(0) = 1

d. f ′1 = 2 f1+ f2+ 2 f3

f ′2 = 2 f1+ 2 f2− 2 f3

f ′3 = 3 f1+ f2+ f3

f1(0) = f2(0) = f3(0) = 1

Exercise 3.5.2 Show that the solution to f ′ = a f satis-
fying f (x0) = k is f (x) = kea(x−x0).

Exercise 3.5.3 A radioactive element decays at a rate
proportional to the amount present. Suppose an initial
mass of 10 g decays to 8 g in 3 hours.

a. Find the mass t hours later.

b. Find the half-life of the element—the time taken
to decay to half its mass.
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Exercise 3.5.4 The population N(t) of a region at time
t increases at a rate proportional to the population. If
the population doubles every 5 years and is 3 million ini-
tially, find N(t).

Exercise 3.5.5 Let A be an invertible diagonalizable
n× n matrix and let b be an n-column of constant func-
tions. We can solve the system f′ = Af+b as follows:

a. If g satisfies g′ = Ag (using Theorem 3.5.2), show
that f = g−A−1b is a solution to f′ = Af+b.

b. Show that every solution to f′ = Af+b arises as in
(a) for some solution g to g′ = Ag.

Exercise 3.5.6 Denote the second derivative of f by
f ′′ = ( f ′)′. Consider the second order differential equa-
tion

f ′′−a1 f ′−a2 f = 0, a1 and a2 real numbers (3.15)

a. If f is a solution to Equation 3.15 let f1 = f and
f2 = f ′−a1 f . Show that
{

f ′1 = a1 f1 + f2

f ′2 = a2 f1
,

that is

[
f ′1
f ′2

]
=

[
a1 1
a2 0

][
f1

f2

]

b. Conversely, if

[
f1

f2

]
is a solution to the system in

(a), show that f1 is a solution to Equation 3.15.

Exercise 3.5.7 Writing f ′′′ = ( f ′′)′, consider the third
order differential equation

f ′′′−a1 f ′′−a2 f ′−a3 f = 0

where a1, a2, and a3 are real numbers. Let
f1 = f , f2 = f ′−a1 f and f3 = f ′′−a1 f ′−a2 f ′′.

a. Show that




f1

f2

f3


 is a solution to the system





f ′1 = a1 f1 + f2

f ′2 = a2 f1 + f3

f ′3 = a3 f1

,

that is




f ′1
f ′2
f ′3


=




a1 1 0
a2 0 1
a3 0 0






f1

f2

f3




b. Show further that if




f1

f2

f3


 is any solution to this

system, then f = f1 is a solution to Equation 3.15.

Remark. A similar construction casts every linear differ-
ential equation of order n (with constant coefficients) as
an n×n linear system of first order equations. However,
the matrix need not be diagonalizable, so other methods
have been developed.

3.6 Proof of the Cofactor Expansion Theorem

Recall that our definition of the term determinant is inductive: The determinant of any 1× 1 matrix is
defined first; then it is used to define the determinants of 2× 2 matrices. Then that is used for the 3× 3
case, and so on. The case of a 1×1 matrix [a] poses no problem. We simply define

det [a] = a

as in Section 3.1. Given an n×n matrix A, define Ai j to be the (n−1)×(n−1) matrix obtained from A by
deleting row i and column j. Now assume that the determinant of any (n−1)× (n−1) matrix has been
defined. Then the determinant of A is defined to be

det A = a11 det A11−a21 det A21 + · · ·+(−1)n+1an1 det An1

=
n

∑
i=1

(−1)i+1ai1 det Ai1


